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MetaML and Multi-Stage Programming withExplicit Annotations?Walid Taha and Tim SheardOregon Graduate InstituteAbstract. We introduce MetaML, a practically-motivated, statically-typed multi-stage programming language. MetaML is a \real" language.We have built an implementation and used it to solve multi-stage prob-lems.MetaML allows the programmer to construct, combine, and execute codefragments in a type-safe manner. Code fragments can contain free vari-ables, but they obey the static-scoping principle. MetaML performs type-checking for all stages once and for all before the execution of the �rststage.Certain anomalies with our �rst MetaML implementation led us to for-malize an illustrative subset of the MetaML implementation. We presentboth a big-step semantics and type system for this subset, and prove thetype system's soundness with respect to a big-step semantics. From asoftware engineering point of view, this means that generators writtenin the MetaML subset never generate unsafe programs. A type systemand semantics for full MetaML is still ongoing work.We argue that multi-stage languages are useful as programming lan-guages in their own right, that they supply a sound basis for high-levelprogram generation technology, and that they should support featuresthat make it possible for programmers to write staged computationswithout signi�cantly changing their normal programming style. To illus-trate this we provide a simple three stage example elaborating a numberof practical issues.The design of MetaML was based on two main principles that we iden-ti�ed as fundamental for high-level program generation, namely, cross-stage persistence and cross-stage safety. We present these principles, ex-plain the technical problems they give rise to, and how we address withthese problems in our implementation.Keywords: Functional Programming, �-Calculus, High-level Program Gen-eration, Type-Safety, Type-Systems, Programming Language Semantics, Multi-level Languages, Multi-stage Languages.? The research reported in this paper was supported by the USAF Air Materiel Com-mand, contract # F19628-93-C-0069, and NSF Grant IRI-9625462. An earlier versionof this paper appeared in The Proceedings of the ACM SIGPLAN Symposium onPartial Evaluation and Semantics Based Program Manipulation. pp 203-217. Ams-terdam, The Netherlands, June 12-13, 1997.
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1 IntroductionHigh-level program generators can increase the e�ciency, productivity, reliabil-ity, and quality of software systems [26, 22, 23]. Despite the numerous examplesof program generation in the literature, almost all these systems construct pro-gram fragments using ad hoc techniques.Our thesis is that a well-designed statically-typed multi-stage programminglanguage supplies a sound basis for high-level program generation technology.Our goal is to design a language that allows the user to construct, combine, andevaluate programs at a higher level of abstraction than the classic \programs-as-strings" level. Using such a language would make the formal veri�cation ofgenerated-program properties easier.1.1 Staging and Multi-Stage ProgrammingThe concept of a stage arises naturally in a wide variety of situations. For a com-piled language, the execution of a program involves two distinct stages: compile-time, and run-time. Three distinct stages appear in the context of program gen-eration: generation, compilation, and execution. For example, the Yacc parsergenerator �rst reads a grammar and generates C code; second, this program iscompiled; third, the user runs the compiled code.A multi-stage program is one that involves the generation, compilation, andexecution of code, all inside the same process. Multi-stage languages expressmulti-stage programs. Staging, and consequently multi-stage programming, ad-dress the need for general purpose solutions which do not pay run-time inter-pretive overheads. Many studies have demonstrated the e�ectiveness of staging[2, 17, 16, 8, 12, 25, 37, 49]. Yet there has generally been little support for writingmulti-stage programs directly in high level programming languages such as SMLor Haskell. Recently, multi-level languages have been proposed as intermediatean representation for partial evaluation [13, 9, 10], and as a formal foundationfor run-time code generation [7]. In this paper we hope to show that a carefullydesigned multi-level language would also be well-suited for multi-stage program-ming.1.2 MetaMLMetaML is an SML-like language with special constructs for multi-stage pro-gramming. MetaML is tightly integrated in that programs can be constructed,combined, compiled, and executed all under a single paradigm. Programs arerepresented as abstract syntax trees in a manner that avoids going throughstring representations. This makes verifying semantic properties of multi-stageprograms possible. The key features of MetaML are as follows:{ Staging annotations: Four distinct constructs which we believe are a goodbasis for general-purpose multi-stage programming.
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{ Static type-checking: A multi-stage program is type-checked once and forall before it begins executing, ensuring the safety of all computations in allstages.{ Cross-stage persistence: A variable bound in a particular stage, will be avail-able in futures stages.{ Cross-stage safety: An input �rst available in a particular stage cannot beused at an earlier stage.{ Static scoping of variables in code fragments.2 Relationship to LISPMetaML has three annotations, Brackets, Escape, and Run, that are analogousto LISP's back-quote, comma, and eval constructs. This analogy is useful ifthe reader is familiar with LISP. Brackets are similar to back-quote. Escape issimilar to comma. Run is similar to eval in the empty environment. However, theanalogy is not perfect. LISP does not ensure that variables (atoms) occurringin a back-quoted expressions are bound according to the rules of static scoping.For example `(plus 3 5) does not bind plus in the scope where the term occurs.We view this as an important feature of MetaML. We view MetaML's semanticsas a concise formalization of the semantics of LISP's three constructs, but withstatic scoping. This is similar in spirit to Brian Smith's semantically motivatedLISP [45, 46]. Finally, whereas LISP is dynamically typed, MetaML is staticallytyped.The annotations can also be viewed as providing a simple but statically-typedmacro-expansion system. This will become clear as we introduce and demon-strate the use of these constructs. But it is also important to note that theannotations don't allow the de�nition of new language constructs or bindingmechanisms, as is sometimes expected from macro-expansion systems.Finally, we should point out that back-quote and comma are macros in LISP.This leads to two problems. First, they have non-trivial formal semantics (abouttwo pages of LISP code). Second, because of the way they expand at parse-time,they can lead to a representation overhead exponential in the number of levels ina multi-level program [10]. MetaML avoids both problems by a direct treatmentof Bracket and Escape as language constructs.3 Relationship to Linguistic Reection\Linguistic reection is de�ned as the ability of a program to generate new pro-gram fragments and to integrate these into its own execution" [47]. MetaML is adescendent of CRML [40, 41, 15], which in turn was greatly inuenced by TRPL[38, 39]. All three of these languages support linguistic reection. Both CRMLand TRPL were two-stage languages that allowed users to provide compile-timefunctions (much like macros) which directed the compiler to perform compile-time reductions. Both emphasized the use of computations over representations
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of a program's datatype de�nitions. By generating functions from datatype def-initions, it is possible to create speci�c instances of generic functions like equal-ity functions, pretty printers, and parsers [39]. This provides an abstractionmechanism not available in traditional languages. MetaML improves upon theselanguages by adding hygienic variables, generalizing the number of stages, andemphasizing the soundness of its type system.4 Relationship to Partial EvaluationToday, the most sophisticated automatic staging techniques are found in partialevaluation systems [20]. Partial evaluation optimizes a program using partialinformation about the program's inputs. The goal is to identify and perform asmany computations as possible before run-time.O�ine partial evaluation involves two distinct steps, binding-time analysis(BTA) and specialization. BTA determines which computations can be per-formed in an earlier stage given the names of inputs available before run-time(static inputs).In essence, BTA performs automatic staging of the input program. AfterBTA, the actual values of the inputs are made available to the specializer. Follow-ing the annotations, the specializer either performs a computation, or producestext for inclusion in the output (residual) program.The relationship between partial-evaluation and multi-stage programming isthat the intermediate data structure between the two steps is a two-stage an-notated program [1, 34], and that the specialization phase is the �rst stage inthe execution of the two-stage annotated program produced by BTA. Recently,Gl�uck and J�rgensen proposed multi-level BTA and showed that it is an e�-cient alternative to multiple specialization [9, 10]. Their underlying annotatedlanguage is closely related to MetaML, but without static-typing.5 Why Explicit Annotations?While BTA performs staging automatically, there are a number of reasons whythe manual staging of programs is both interesting and desirable:Pragmatic. The subtlety of the semantics of annotated programs warrantsstudying them in relative isolation, and without the added complexity of otherpartial evaluation issues such as BTA.As a Pedagogical Tool. It has been observed that it is sometimes hard forusers to understand the workings of partial evaluation systems [18]. New usersoften lack a good mental model of how partial evaluation systems work. Fur-thermore, new users are often uncertain: What is the output of a binding-timeanalysis? What are the annotations? How are they expressed? What do theyreally mean? The answers to these questions are crucial to the e�ective use ofpartial evaluation. Although BTA is an involved process, requiring special exper-tise, the annotations it produces are relatively simple and easy to understand.
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Our observation is that programmers can understand the annotated output ofBTA, without actually knowing how BTA works. Having a programming lan-guage with explicit staging annotations would help users of partial evaluationunderstand more of the issues involved in staged computation, and, hopefully,reduce the steep learning curve currently associated with learning to use a partialevaluator e�ectively [20].For Controlling Evaluation Order. Whenever performance is an issue,control of evaluation order is important. BTA optimizes the evaluation ordergiven the time of arrival of inputs, but sometimes it is just easier to say whatis wanted, rather than to force a BTA to discover it [19]. Automatic analyseslike BTA are necessarily incomplete, and can only approximate the knowledge ofthe programmer. By using explicit annotations the programmer can exploit hisfull knowledge of the program domain. In a language with automatic staging,having explicit annotations can o�er the programmer a well designed back-doorfor dealing with instances when the analysis reaches its limits.For Controlling Termination Behavior. Annotations can alter termina-tion behavior in two ways: 1) Specialization of an annotated program can fail toterminate, and 2) the generated program itself might have termination behaviordi�ering from that of the original program [20]. While this is an area of activeinvestigation in partial evaluation, programming with explicit annotation givesthe user complete control over (and responsibility for) termination behaviour ina staged system.6 MetaML's Staging AnnotationsMetaML has four staging annotations: Brackets h i, Escape ~ , Run run , andLift lift . An expression hei builds a piece of code which is a representation ofe. An expression ~e splices the code obtained by evaluating e into the body of asurrounding Bracketed expression. An expression ~e is only legal within lexicallyenclosing Brackets. An expression run e evaluates e to obtain a piece of code, andthen evaluates that code. The expression lift e evaluates e to a value v, and thenconstructs a piece of code representing v. The term e must have ground type. Aground type is a type not containing a function type. To illustrate, consider thescript of a small MetaML session below1:-j val triple = (3+4, h3+4i, lift 3+4);val triple = (7,h3 %+ 4i,h7i) : (int * hinti * hinti)-j fun f (x,y,z) = h8 - ~yi;val f = fn : ('a * hinti * 'b) ! hinti-j val code = f triple;val code = h8 %- (3 %+ 4)i : hinti1 The reader should treat the percentage signs % as white space until they are ex-plained in the next section.
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-j run code;val it = 1 : intThe �rst declaration de�nes a variable triple. The addition in the �rst componentof the triple is evaluated. The evaluation of the addition in the second componentis deferred by the Brackets. The addition in the third component is evaluatedand then the result is Lifted into a piece of code. Brackets in types such as hintiare read \Code of int", and distinguish values such as h3+4i from values suchas 7. The second declaration illustrates that code can be abstracted over, andthat it can be spliced into a larger piece of code. The third declaration appliesthe function f to triple performing the actual splicing. And the last declarationevaluates this deferred piece of code.MetaML can be used to construct larger pieces of code at run-time:-j fun mult x n = if n=0then h1ielse h~x * ~(mult x (n-1))i;val mult = fn : hinti ! int ! hinti-j val cube = hfn y ) ~(mult hyi 3)i;val cube = hfn a ) a %* (a %* (a %* 1))i : hint ! inti-j fun exponent n = hfn y ) ~(mult hyi n)i;val exponent = fn : int ! hint ! intiThe function mult, given an integer piece of code x and an integer n, producesa piece of code that is an n-way product of x. This can be used to constructthe code of a function that performs the cube operation, or generalized to agenerator for producing an exponentiation function from a given exponent n.Note how the looping overhead has been removed from the generated code.6.1 RolesBoth Lift and Brackets create pieces of code. The essential di�erence is that Liftevaluates its argument, and Bracket does not. Function values cannot be liftedinto code using Lift, as we cannot derive a high-level intensional representationfor them in general. However, as we will see, function values can be injected intocode fragments using Brackets.Escape allows us to \evaluate under lambda". This can be seen in the de�-nition of the functions cube and exponent above.Having Run in the language implies introducing a kind of reection [45, 3],and allows a delayed computation to be activated.6.2 Syntactic Precedence IssuesThe Escape operator has the highest precedence; even higher than function ap-plication. This allows us to write: hf ~x yi rather than hf (~x) yi. The Lift and



www.manaraa.com

Run operators have the lowest precedence. The scope of these operators extendsto the right as far as possible. This makes it possible to write hf ~(lift g y) zirather than hf ~(lift (g y)) zi.7 The Design of MetaMLMetaML was designed as a statically-typed programming language, and notas an internal representation for a multi-stage system. Our primary goals forMetaML were: �rst, it should be suitable for writing multi-staged programs,second it should be as exible as possible, and third it should ensure that only\reasonable things" can be done using the annotations. Therefore, our designchoices were di�erent from those of other multi-stage systems.To de�ne the semantics of MetaML, a syntactic notion of level is needed. Thelevel of an expression is the number of surrounding Brackets, minus the numberof surrounding Escapes. It is possible to use a variable at a level di�erent thanthe level of the lambda-abstraction which binds it. In this sections, we discusstwo principles for determining which uses are acceptable, and which are not.7.1 Cross-Stage PersistenceCross-stage persistence is one of the distinguishing feature of MetaML. To ourknowledge, it has not been proposed or incorporated into any multi-stage pro-gramming language. In essence, cross-stage persistence allows the programmerto use a variable bound at the current level in any expression to be executedin a future stage. We believe this to be a desirable and natural property in amulti-stage language. The type system will have to ensure that these variablesare available before this expression is evaluated.When the level of the use of a variable is greater than the level at which itwas bound, we say that variable is cross-stage persistent.To the user, cross-stage persistence means the ability to stage expressionsthat use variables de�ned at a previous stage. Bracketed expressions with freevariables, like lambda-abstractions with free variables, must resolve their freevariable occurrences in the static environment where the expression occurs. Onecan think of a piece of code as containing an environment which binds its cross-stage persistent variables. For example the programval a = 1+4 ; h72+aicomputes the code fragment h72 %+ %ai. The percentage sign % indicates thatthe cross-stage persistent variables a and + are bound in the code's local envi-ronment. The variable a has been bound during the �rst stage to the constant5. The percentage sign is printed by the display mechanism to indicate that %ais not a variable, but rather, a new constant. The name \a" is only providedas a hint to the user about where this new constant originated from. When %ais evaluated in a later stage, it will return 5 independently of the binding for
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the variable a in the new context since it is bound in the value's local envi-ronment. Arbitrary values (including functions) can be injected into a piece ofcode using this hygienic binding mechanism. Formally specifying this behaviorin a big-step semantics turns out to be non-trivial. In an interpreter for a multi-stage language, this behaviour manifests itself as complex variable-binding rules,the use of closures, or capture-free substitutions. Our implementation semanticsaddresses cross-stage persistence in a novel way (Section 13.1).Cross-Platform Portability For high-level program generation, cross-stagepersistence comes at a price. Because most compilers do not maintain a high-level representation for values at run-time, being able to inject any value into thecode type means that some parts of this code fragment may not be printable. So,if the �rst stage is performed on one computer, and the second on another, wemust \port" the local environment from the �rst machine to the second. Sincearbitrary objects, such as functions and closures, can be bound in this localenvironment, this can cause portability problems. Currently, MetaML assumesthat the computing environment does not change between stages. This is part ofwhat we mean by having an integrated system. Thus, MetaML currently lackscross-platform portability. The loss of this property is the price paid for cross-stage persistence.Cross-platform portability is usually not an issue for run-time code generationsystems, and hence, cross-stage persistence might in fact be more appropriatefor such systems. On the other hand, the problem of cross-platform portability issimilar to that of lifting functional values in partial evaluation, and type-directedpartial evaluation may provide a solution to this problem [4, 42].7.2 Cross-Stage SafetyNot every staged form of a typable expression should be typable in a multi-stagelanguage. When a variable is used at a level less than the level of the lambda-abstraction in which it is bound, we say the use violates cross-stage safety.Cross-stage safety prevents us from staging programs in unreasonable ways, asis the case in the expressionfn a ) hfn b ) ~(a+b)iOperationally, these annotations dictate computing a+b in the �rst stage, whilethe value of b will be available only in the second stage! Therefore, MetaML'stype system was designed to ensure that \well-typed programs won't go wrong",where going wrong now includes the violation of the cross-stage safety condition,as well as the standard notions of going wrong [27] in statically-typed languages.In our experience with MetaML, having a type system to screen out programscontaining this kind of error is a signi�cant aid in hand-staging programs.
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8 Hand-Staging: A Short ExampleUsing MetaML, the programer can stage programs by inserting the proper an-notations at the right places in the program. The programmer uses these anno-tations to modify the default (strict) evaluation order of the program.In our experience, starting with the type of the function to be hand-stagedmakes the number of di�erent ways in which it can be annotated quite tractable.This leads us to believe that the location of the annotations in a staged versionof a program is signi�cantly constrained by its type. For example, consider thefunction member de�ned as follows2:(* member : int ! int list ! bool *)fun member v l =if (null l)then falseelse if v=(hd l)then trueelse member v (tl l);The function member has type int ! int list ! bool. A good strategy for handannotating a program is to �rst determine the target type of the desired anno-tated program. Suppose the list parameter l is available in the �rst stage, and theelement searched for will be available later. One target type for the hand-stagedfunction is hinti ! int list ! hbooli.Now we can begin annotating, starting with the whole expression, and work-ing inwards until all sub-expressions are covered. At each step, we try to �nd theannotations that will \�x" the type of the expression so that the whole functionhas a type closer to the target type. The following function realizes this type:(* member : hinti ! int list ! hbooli *)fun member v l =if (null l)then hfalseielse hif ~v=~(lift hd l)then trueelse ~(member v (tl l))i;But not all annotations are explicitly dictated by the type. The annotation ~(lifthd l) has the same type as (and replaces) hd l in order to ensure that hd isperformed during the �rst stage. Otherwise, all selections of the head element ofthe list would have been delayed until the code constructed was Run in a laterstage.The Brackets around the branches of the outermost if-expression ensure thatthe return value of member will be a code type h i. The �rst branch hfalsei needsno further annotations, and makes the return value precisely a hbooli. Moving2 Function \=" has type (int * int) ! bool which forces v and l to have types int andint list, respectively.
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inwards in the else branch, the condition of the inner if-expression (in particular~v) forces the type of the v parameter to have type hinti as planned.Just like the �rst branch of the outer if-statement, the inner if-statementmust return bool. So, the �rst branch (true) is �ne. But because the recursivecall to member has type hbooli, it must be Escaped. Inserting this Escape alsoimplies that the recursion will be performed in the �rst stage, which is exactly thedesired behavior. Thus, the result of the staged member function is a recursively-constructed piece of code with type bool.Evaluating hfn x ) ~(member hxi [1,2,3])i yields:hfn d1 )if d1 %= 1then trueelse if d1 %= 2then trueelse if d1 %= 3then trueelse falsei9 Back and Forth: Two Useful Functions on Code TypesWhile staging programs, we found an interesting pair of functions to be useful:(* back: h'ai ! h'bi ! h'a ! 'bi *)fun back f = hfn x ) ~(f hxi)i;(* forth: h'a ! 'bi ! (h'ai ! h'bi) *)fun forth f x = h~f ~xi;We used a similar construction to stage the member function of type hinti ! intlist ! hbooli, within the term hfn x ) ~(member hxi [1,2,3])i which has type hint! booli.In our experience annotating a function to have type h'ai ! h'bi requires lessannotations than annotating it to have type h'a! 'bi and is often easier to thinkabout. Because we are more used to reasoning about functions, this leads us toavoid creating functions of the latter kind except when we need to see the code.This also applies to programs with more than two stages. Consider the function:(* back2 : (h'ai ! hh'bii ! hh'cii) ! h'a ! h'b ! 'cii *)fun back2 f = hfn x ) hfn y ) ~~(f hxi hhyii)ii;This allows us to write a program which takes a hai and a hhbii as arguments andwhich produces a hhcii, and stage it into a three-stage function. Our experienceis that such functions have considerably fewer annotations, and are easier tothink about. This is illustrated in the following section.Another reason for our interest in back and forth is that they are similar totwo-level �-expansion [5]. In MetaML, however, back and forth are not only meta-level concepts or optimizations, but rather, �rst class functions in the language,and the user can apply them directly to values of the appropriate type.
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We also conjecture that back and forth form an isomorphism between twointeresting subsets of the types h'ai ! h'bi and h'a ! 'bi. These subsets mustexclude, for example, non-terminating functions in the set for h'a ! 'bi. Wehope to be able to con�rms this conjecture in future work.10 A Multi-Stage ExampleWhen information arrives in multiple phases it is possible to take advantage ofthis fact to get better performance. Consider a generic function for computingthe inner product of two vectors. In the �rst stage the arrival of the size of thevectors o�ers an opportunity to specialize the inner product function on that size,removing the overhead of looping over the body of the computation n times. Thearrival of the �rst vector a�ords a second opportunity for specialization. If theinner product of that vector is to be taken many times with other vectors it canbe specialized by removing the overhead of looking up the elements of the �rstvector each time. This is exactly the case when computing the multiplication of2 matrixes. For each row in the �rst matrix, the dot product of that row will betaken with each column of the second. This example has appeared in several otherworks [9, 24]. We give three versions of the inner product function. One (iprod)with no staging annotations, the second (iprod2) with two levels of annotations,and the third (iprod3) with two levels of annotations but constructed with theback2 function. In MetaML we quote relational operators involving less-than <and greater-than > because of the possible confusion with Brackets.(* iprod : int ! Vector ! Vector ! int *)fun iprod n v w =if n '>' 0then ((nth v n) * (nth w n)) + (iprod (n-1) v w)else 0;(* iprod2 : int ! hVector ! hVector ! intii *)fun iprod2 n = hfn v ) hfn w )~~(if n '>' 0then hh (~(lift nth v n) * (nth w n)) + (~(~(iprod2 (n-1)) v) w)iielse hh0ii)ii;(* p3 : int ! hVectori ! hhVectorii ! hhintii *)fun p3 n v w =if n '>' 0then hh (~(lift nth ~v n) * (nth ~~w n)) + ~~(p3 (n-1) v w)iielse hh0ii;fun iprod3 n = back2 (p3 n);Notice that the staged versions are remarkably similar to the unstaged version,and that the version written with back2 has fewer annotations. The type infer-
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ence mechanism and the interactive environment were a great help in placingthe annotations correctly.An important feature of MetaML is the visualization help that the systema�ords. By testing iprod2 on some inputs we can immediately see the results.val f1 = iprod3 3;f1 : hVector ! hVector ! intii =hfn d1 )hfn d5 )(~(lift %nth d1 3) %* (%nth d5 3)) %+(~(lift %nth d1 2) %* (%nth d5 2)) %+(~(lift %nth d1 1) %* (%nth d5 1)) %+0iiWhen this piece of code is Run it will return a function, which when applied toa vector builds another piece of code. This building process includes looking upeach element in the �rst vector and splicing in the actual value using the Liftoperator. Using Lift is especially valuable if we wish to inspect the result of thenext phase. To do that we evaluate the code by Running it, and apply the resultto a vector.val f2 = (run f1) [1,0,4];f2: hVector ! inti =hfn d1 ) (4 %* (%nth d1 3)) %+(0 %* (%nth d1 2)) %+(1 %* (%nth d1 1)) %+ 0iNote how the actual values of the �rst array appear in the code, and how theaccess function nth appears as a constant expression applied to the second vectord1. While this code is good, it does not take full advantage of all the informationknown in the second stage. In particular, note that we generate code for thethird stage which may contain multiplication by 0 or 1. These multiplicationscan be optimized. To do this we write a second stage function add which givenan index into a vector i, an actual value from the �rst vector x, and a piece ofcode which names the second vector y, constructs a piece of code which adds theresult of the x and y multiplication to the code valued fourth argument e. Whenx is 0 or 1 special cases are possible.(* add : int ! int ! hVectori ! hinti *)fun add i x y e =if x=0then eelse if x=1then h(nth ~y ~(lift i)) + ~eielse h(~(lift x) * (nth ~y ~(lift i))) + ~ei;This specialized function is now used to build the second stage computation:
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(* p3 : int ! hVectori ! hhVectorii ! hhintii *)fun p3 n v w =if n = 1then hh~(add n (nth ~v n) ~w h0i)iielse hh~(add n (nth ~v n) ~w h~~(p3 (n-1) v w)i)ii;fun iprod3 n = back2 (p3 n);Now let us observe the result of the �rst stage computation.val f3 = iprod3 3;f3: hVector ! hVector ! intii =hfn d1 )hfn d5 )~(%add 3 (%nth d1 3) hd5ih ~(%add 2 (%nth d1 2) hd5ih~(%add 1 (%nth d1 1) hd5ih0i)i)i)iiThis code is linear in the size of the vector; if we had actually in-lined the callsto add it would be exponential. This is another reason why having cross-stagepersistent constants (such as add) in code is indispensable. Now let us observethe result of the second stage computation:val f4 = (run f3) [1,0,4];f4: hVector ! inti = hfn d1 ) (4 %* (%nth d1 3)) %+ (%nth d1 1) %+ 0iNote that now only the multiplications that contribute to the answer remain inthe third stage program. If the vector is sparse then this sort of optimizationcan have dramatic e�ects.11 Formal Semantics and Development of MetaMLThe study of the formal semantics of MetaML is still ongoing research. In thissection, we will present the type system of MetaML [48], and outline a proof ofits soundness using a simpli�ed adaptation of the proofs appearing in [29]. Thereader is encourage to consult these sources for more detailed treatment of howthese results where achieved.11.1 Big-step SemanticsThe syntax of the core subset of MetaML is as follows:e := i j x j e e j �x:e j hei j ~e j run e
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Values. Values are a subset of terms, which denote the results of computations.Because of the relative nature of Brackets and Escapes, it is important to use afamily of sets for values, indexed by the level of the term, rather than just oneset. Values are de�ned as follows:v0 2 V 0 := i j x j �x:e j hv1iv1 2 V 1 := i j x j v1 v1 j �x:v1 j hv2i j run v1vn+2 2 V n+2 := i j x j vn+2 vn+2 j �x:vn+2 j hvn+3i j ~vn+1 j run vn+2The set of values has three notable points. First, values can be Bracketed ex-pressions. This means that computations can return pieces of code representingother programs. Second, values can contain applications (inside Brackets) suchas (�y:y) (�x:x) 2 V 1. Third, there are no level 1 Escapes in values.The de�nition of substitution is standard and is denoted by e[x := v] for thesubstitution of v for the free occurrences of x in e. The core subset of MetaMLcan be assigned a big-step semantics as follows [29]:e1 0,! �x:e e2 0,! v1 e[x := v1] 0,! v2e1 e2 0,! v2 i n,! i x n+1,! xe1 n+1,! v1 e2 n+1,! v2e1 e2 n+1,! v1 v2 �x:e 0,! �x:e e n+1,! v�x:e n+1,! �x:ve 0,! hv0i v0 0,! vrun e 0,! v e 0,! hvi~e 1,! ve n+1,! vrun e n+1,! run v e n+1,! v~e n+2,! ~v e n+1,! vhei n,! hviThe big-step semantics at level n (e n,! v) always returns a value v 2 V n.The index on v is left implicit in the above semantics for clarity.11.2 Type SystemThe judgement � ǹ e : �; r is read \under the type environment �, at level nand syntactically surrounded by r occurrences of Run, the term e has type � ."The type assignment � maps variables to a triple. This triple consists of thetype, the level, and the number of surrounding occurrences of Run at the pointwhere this variable was bound (See Abs rule).Going Wrong There are three main kinds of errors related to staging annota-tions that can occur at run-time:(1) A variable is used at a level less than the level of the lambda-abstraction inwhich it is bound, or
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Domains and RelationsLevels n; r := 0 j n+ 1Types � := int j � ! � j h�iType Environments � := [ ] j x 7! (�; r)n;�where (x 7! (�; r)n;�)y � if x = y then (�; r)n else � yInference RulesInt n: � ǹ i : int; r Var n: � x = (�; r0)n0 n0 + r � n+ r0� ǹ x : �; rBr n: � n+1` e : �; r� ǹ hei : h�i; r Esc n+1: � ǹ e : h�i; r� n+1` ~e : �; rAbs n: x 7! (�1; r)n;� ǹ e : �2; r� ǹ �x : e : �1 ! �2; r App n: � ǹ e1 : �1 ! �; r� ǹ e2 : �1; r� ǹ e1 e2 : �; rRun n: � ǹ e : h�i; r + 1� ǹ run e : �; r Fig. 1. Type System(2) Run or Escape are passed values having a non-code type, or(3) Run alters the level of its argument, and can therefore lead to a type (1)error.The �rst kind of error is checked by the Var rules. Let us assume that ourprogram contains no Run annotations, then r is always zero. Having a rule forn0 � n allows cross-stage persistence: Variables available in the current stage(n0) can be used in all future stages (n). The second kind of error is checked bythe Run n and Esc n+1 rules. Detecting the third kind of error is more di�cultproblem, and is accomplished by keeping track of surrounding occurrences of Runand comparing it to surrounding (uncancelled) Brackets. In essence, assumingthe type is correct, we only allow Run, where it removes explicitly manifestBrackets. This is incorporated into the variable rule using the condition n0 +r � n + r0 which ensures that every occurrence of a variable has strictly moresurrounding Brackets than Runs. Without this condition we would wronglyallow the program hfn x ) ~(run hxi)iwhich reduces to the term hfn x) ~xi which is neither a value nor can be reducedany further. In general, this means that we have to be careful with open piecesof code. Speci�cally, we have to make sure that if Run is applied to an openpiece of code, the level of the free variables used in this piece of code will notdrop below the level at which they are bound.



www.manaraa.com

For the standard part of the language, code is a normal type constructorthat needs no special treatment, and the level n is never changed by the otherlanguage constructs.11.3 Type PreservationAs is common in type preservation proofs, one must prove a Substitution lemma.In addition, because our semantics is also expected to respect the notion of level,we also prove so called Promotion and Demotion lemmas:Lemma 1 (Level Properties). The type system has the following three im-portant properties:{ Promotion: �1; �2 ǹ e : �; r implies �1; �+(c+d;c)2 n+c+d` e : �; r + c{ Flex: x 7! (� 0; r0 + 1)n0+1;�1 ǹ e : �; r implies x 7! (� 0; r0)n0 ;�1 ǹ e : �; r{ Demotion: v 2 Vn+1 and � n+1` v : �; r + 1 implies � ǹ v : �; rwhere �+(c;d) x = (�; r + d)(n+c) whenever � x = (�; r)n.Proof. All three properties are proved by straight forward induction over the �rsttyping derivation. The proof of Demotion uses Flex in the case of Abstraction,and takes advantage of the de�nition of values in the case of Escape to showthat Escape at level 1 is not relevant.Lemma 2 (Substitution). Let r0 � r. Then, �0 n0̀ e0 : � 0; r0 and x 7! (� 0; r0)n0 ;� ǹe : �; r implies �0;� ǹ e[x := e0] : �; rProof. By straight forward induction over the height of the second typing deriva-tion. The (non-trivial) Variable case uses promotion and takes advantage of thecondition that r0 � r.and we can now prove our main theorem:Theorem 1 (Type Preservation). If �+(1;0) ǹ e : �; r and e n,! v then v 2 Vnand �+(1;0) ǹ v : �; r.Proof. By straight forward induction over the height of the evaluation derivation.Application at level 0 uses substitution, and Run at level 0 uses demotion.11.4 Cross-Stage PersistenceMonolithic Variables Cross-stage persistence can be relaxed by allowing vari-ables to be available at exactly one stage. This seems to be the case in all multi-stage languages known to us to date [34, 7, 13, 9, 10, 6]. Intuitively, they use thefollowing monolithic rule for variables (assume r = 0):
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Var (Monolithic): � x = �n0� ǹ x : � when n0 = nWe allow the more general condition n0 � n, so an expression likeval lift like = fn x ) hxiis accepted, because inside the Brackets, n = 1, and � x = �0. This expression isnot accepted by the monolithic variable rule. Note that while the whole functionhas type � ! h�i it does not provide us with the functionality of Lift, becausethe result of applying lift like to any value always returns the constant h%xi, nota literal expression denoting the value. This distinction can only be seen at thelevel of the implementation semantics (discussed below) but not the big-stepsemantics (discussed above).The type system rejects the expressionfn a ) hfn b ) ~(a+b)ibecause, inside the Escape, n = 0, and (� b) = �1, but 1 6� 0.12 Limitations to the Expressivity of RunThe type system presented above does not admit the lambda-abstraction of Run.This was, to a large extent, a design choice and a compromise. In particular, ifa Run function is introduced into the language as a constant, it breaks thesafety of the type system. In this section, we discuss two expressivity problemsthat arise from this design choice, and how they are addressed in the currentimplementation.12.1 Typing Top-Level BindingsProblem. A MetaML program consists of a sequence of top-level declarationsbinding variables to terms, followed by a term:program := e j val x = e ; programIf we interpret a top-level declaration val a=e1 ; e2 as the application (�a:e2) e1,then we are in the inconvenient situation where we cannot bind a value at top-level that we will eventually want to Run, even if it might otherwise be safe toRun it. This is because �a:run a is not typable in the type system presented inthis paper. Thus, this interpretation of val a = h1i; run a would be untypable.
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Observations. Top-level bindings have a number of important properties whichother (�-bound) bindings may not: First, every top-level binding is at level 0.Second, all top-level bindings are only within the scope of other top-level bind-ings. Furthermore, no top-level binding is in the scope of a variable bound at alevel greater than 0. This is because, syntactically, no top-level binding can occurin the scope of a piece of code with free variables. Without such free variables,Run does not cause a problem. One of the purposes of the type system was tothrow away programs where Run was applied to code with free variables thatcan cause the computation to get stuck (type (3) errors). Because syntactic re-strictions guarantee that variables bound at top-level cannot cause this problem,we use a di�erent type rule for top-level bindings, allowing more safe terms tobe typable.A Solution. The current implementation avoids this problem in MetaML byusing the following rule for top-level bindings in the interactive loop:Top: a 7! (�1; r + h)0;� 0̀ e2 : �; r � 0̀ e1 : �1; r + h� 0̀ val a=e1 ; e2 : �; rFor top-level declarations, the system prints the type of binding as it is en-tered by the user. Note, however, that h is not printed. In theory, h is existentiallyquanti�ed in the rule above. In practice, a large number is used. Intuitively, thelarge h corresponds to the ability to Run values declared at top-level as manytimes as we want.Soundness of Top Rule. A let-expression let a=e1 in e2 is usually interpretedas having the same operational semantics as (�a:e2)e1. This interpretation canbe used to derive the typing rule for let by collecting the simpli�ed assumptions:a 7! (�1; r)n;� ǹ e : �; r� ǹ �a:e2 : �1 ! �; r (Lam) � ǹ e1 : �1; r� ǹ (�a:e2)e1 : �; r� ǹ let a=e1 in e2 : �; r(By def.) (App)+a 7! (�1; r)n;� ǹ e : �; r � ǹ e1 : �1; r� ǹ let a=e1 in e2 : �; r (Let)The Top rule is based on an equivalent but non-standard operational inter-pretation of the declaration val a=e1 ; e2, namely, run(h) ((�a:h(h)e2i)e1) where h
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is the number of repeated occurrences of the construct that it appears as a super-script of. This interpretation is motivated by the fact that if this term is typable,and e1 0,! v1, then all the terms in the relation run(h) ((�a:h(h)e2i)e1) 0,! e2[v1=a]are typable whenever the derivation exists. We don't perform the substitutionduring type-checking, but rather, using the derivationa 7! (�1; r + h)n;� ǹ e2 : �; ra 7! (�1; r + h)n;� n+h` e2 : �; r + h(Promotion Lemma)a 7! (�1; r + h)n;� ǹ h(h)e2i : h(h)�i; r + h (Bra h)� ǹ �a:h(h)e2i : �1 ! h(h)�i; r + h (Lam) � ǹ e1 : �1; r + h� ǹ ((�a:h(h)e2i)e1) : h(h)�i; r + h (App)� ǹ run(h) ((�a:h(h)e2i)e1) : �; r(Run h)� ǹ val a=e1 ; e2 : �; r (Def)we arrive at the rule for Top, by collecting the assumptions at the top of thetree of this derivation, and setting n to 0.Picking a large h works because the Promotion Lemma tells us that if thereis an n for which type-checking the top-level let-binding is possible, then it willalso be possible for all n0 > n.12.2 Use of Run inside FunctionsIt would be useful if the type system allowed us to express functions such as thefollowing:val f = fn x : int list ) run (gen x);This is a function that takes a list of integers, generates an intermediate programbased on the list, and then executes the generated program. The type system forthe core language does not admit this term (for any previously declared variablegen). In our experience, most such functions where quite small, and we couldoften achieve the same e�ect as f e by taking advantage of the power of thelet-rule described above:val a = gen e;val r = run a;This trick is useful, but is not satisfactory from the point of view of the modu-larity of the code, as it forces us to do a kind of \inlining" of f to get around thetype system. We conjecture that it is possible to relax the type system somewhatusing rules such asRun n: xi 7! (bi; ri + 1)0;� ǹ e : h�i; r + 1xi 7! (bi; ri)0;� ǹ run e : �; r
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where b is a base-type (such as int or |int list). Intuitively, this typing ruleassures us that whenever a basic value (that is, not involving code) is availableat level 0, it can be used in a context with as many surrounding occurrences ofRun as needed. This rule would allow us to type the expression above. However,it is still ad hoc, and we hope to formulate a more systematic basis for such rulesin future work.13 Implementation SemanticsThe big-step semantics presented above does not capture all the relevant op-erational details addressed in the implementation of MetaML. The three mainexceptions are the need for 1) distinguishing between real and symbolic bind-ings, 2) run-time generation of names (gensym), and 3) cross-stage persistentconstants. In this section we present a semantics which describes our implemen-tation. While we have worked hard to keep our implementation both e�cientand faithful to the big-step semantics, the formal proof of their relation is stillongoing work.13.1 Real and Symbolic Binds, gensym, and Cross-Stage ConstantsThe implementation semantics consists of rules for reduction � ` e ,! v, es-sentially applying the Application and Run rules, and rebuilding � ` e n+1,! e,indexed by a level n+1, essentially constructing code while evaluating Escapedcomputations inside Brackets, where the environment � binds a variable to avalue. Reduction is standard for the most part. A subtlety relating to variablebinding causes a problem that makes environments somewhat complicated. Inparticular, some variables are not yet bound when rebuilding is taking place. Forexample, rebuilding the term hfn x) ~(id hxi)i requires reducing the applicationid hxi. But while reducing this application, the variable x is not yet bound to avalue. In the intended semantics of MetaML, we really want this variable to besimply a name that is not susceptible to accidental name capture at run-time.To solve this problem, bindings in environments come in two avors: real(Real(v)) and symbolic (Sym(x)). The extension of the environment with realvalues occurs only in the rule App 0. Such values are returned (Var 0) underreduction, or injected into constant % terms (RVar n+1) under rebuilding. Inessence, the three tags Real( ), Sym( ) and % work together to provide us withthe set of coercions needed to deal with free variables and to implement cross-stage persistence.Another feature of the implementation semantics is that it is self-contained, inthat it does not use a substitution operation. Instead, substitution is performedby the rebuilding operation. In particular, in the absence of staging annotationsrebuilding is just capture-free substitution of symbolic variables bound in � .Rebuilding is used in two rules, Abs 0 where it is used for capture-freesubstitution, and Bracket 0 where it is applied to terms inside Brackets and itdescribes how the delayed computations inside a value are constructed.
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Domains and RelationsJudgments J := � ` e ,! e j � ` e n+1,! eRulesInt 0: � ` i ,! i Int n+1: � ` i n+1,! iAbs 0: �; x 7! Sym(x0) ` e 1,! e1� ` � x : e ,! � x0 : e1 Abs n+1: �; x 7! Sym(x0) ` e1 n+1,! e2� ` �x : e1 n+1,! �x0 : e2App 0: � ` e1 ,! � x : e� ` e2 ,! v2�; x 7! Real(v2) ` e ,! v� ` e1 e2 ,! v App n+1: � ` e1 n+1,! e3 � ` e2 n+1,! e4� ` e1 e2 n+1,! e3 e4Var 0: � x = Real(v)� ` x ,! v SVar n+1: � x = Sym(x0)� ` x n+1,! x0 x 62 dom(� )� ` x n+1,! xRVar n+1: � x = Real(v)� ` x n+1,! %vBracket 0: � ` e1 1,! e2� ` he1i ,! he2i Bracket n+1: � ` e1 n+1,! e2� ` he1i n,! he2iEscape 1: � ` e1 ,! he2i� ` ~e1 1,! e2 Escape n+2: � ` e1 n+1,! e2� ` ~e1 n+2,! ~e2Run 0: � ` e ,! he1i � ` e1 ,! v1� ` run e ,! v1 Run n+1: � ` e1 n+1,! e2� ` run e1 n+1,! run e2Constant 0: � ` v ,! v0� ` %v ,! v0 Constant n+1: � ` v n+1,! v0� ` %v n+1,! %v0Fig. 2. Implementation SemanticsThe type system ensures that in rule Abs 0, there are no embedded Escapesat level 1 that will be encountered by the rebuilding process, so the use ofrebuilding in this rule implements nothing more than capture-free substitution.In the rebuilding rule Escape 1, an Escaped expression at level 1 indicatesa computation must produce a code-valued result he2i, and rebuilding returnsthe term e2. The role of n in the judgement is to keep track of the level of theexpression being built. The level of a subexpression is the number of uncan-celled surrounding Brackets. One surrounding Escape cancels one surroundingBracket. Hence, n is incremented for an expression inside Brackets (Bracket),and decremented for one inside an Escape (Escape). Note that there is no rulefor Escape at level 0: Escape must appear inside uncancelled Brackets.
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The reduction rule Bracket 0 describes how a code value is constructed froma Bracketed term he1i. The embedded expression is stripped from its Brack-ets, rebuilt at level 1, and the result of this rebuilding is then rewrapped withBrackets.So to summarize, altogether rebuilding has three distinct roles:1. To replace all known variables with a constant expression (%v) where the vcomes from Real(v) bindings in � (rule RVar n+1).2. To rename all bound variables. Symbolic Sym(x0) bindings occur in rulesAbs 0 and Abs n+1 where a term is rebuilt, and new names are introducedto avoid potential variable capture. These new names are projected from theenvironment (rule SVar n+1).3. To execute Escaped expressions to obtain code to \splice" into the contextwhere the Escaped term occurs (rule Escape 1).The reduction rule Run 0 describes how a code-valued term is executed. Theterm is reduced to a code-valued term, and the embedded term is then reducedin the empty environment to produce the answer. The empty environment issu�cient because cross-stage persistent free variables in the original code-valuedterm have been replaced by constant expressions (%v), and all free variables arehandled by the idempotent case in SVar n+1.13.2 The Notion of a StageIn the introduction, we gave the intuitive explanation for a stage. After present-ing the semantics for MetaML, we can now provide a more formal de�nition. Wede�ne (the trace of) a stage as the derivation tree generated by the invocation ofthe derivation � ` e1 ,! v1 (cf. Run 0 rule). Note that while the notion of a levelis de�ned with respect to syntax, the notion of a stage is de�ned with respect to atrace of an operational semantics. Although quite intuitive, this distinction wasnot always clear to us, especially that there does not seem to be any comparablede�nition in the literature with respect to an operational semantics.The levels of the subterms of a program and the stages involved in the execu-tion of the program can be unrelated. A program h1+run h4+2ii has expressionsat levels 0, 1, and 2. If we de�ne the \level of a program" as the maximumlevel of any of its subexpressions, then this is a 2-level program. The evalua-tion of this expression (which just involves rebuilding it), involves no derivations� ` e1 ,! v1. On the other hand, the evaluation of slightly modi�ed 2-levelprogram run h1+run h4+2ii involves two stages.To further illustrate the distinction between levels and stages, let us de�nethe \number of stages" of a program as the number of times the � ` e1 ,! v1 isused in the derivation involved in its evaluation. Consider:(fn x ) if P then x else lift(run x)) h1+2iwhere P is an arbitrary problem. The number of stages in this program is notstatically decidable. Furthermore, we cannot say, in general, which occurrence of
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Run will be ultimately responsible for triggering the computation of the additionin expression h1+2i.Recognizing this mismatch was a useful step towards �nding a type-systemfor MetaML, which employs the static notion of level to approximate the dynamicnotion of stage.13.3 Why is Lambda-Abstraction not Enough?It may appear that staging requires only lambda-abstraction, and its dual op-eration, application. While this may be true for certain applications, for thedomain of program generation there are two additional capabilities that areneeded: First, a delayed computation must maintain an intensional representa-tion, so that users can inspect the code produced by their generators, and sothat it can be printed and fed into compilers. In a compiled implementation,lambda-abstractions lose their high-level intensional representation, and neitherof these is possible.Second, generators often need to perform \evaluation under lambda". This isnecessary for almost any staged application that performs some kind of unfold-ing, and is used in functions like back. Although we cannot prove it, the e�ect ofEscape (under lambda) cannot be imitated in the call-by-value �-calculus with-out extending it with additional constructs. To further explain this point, wewill show an example of the result of encoding of the operational semantics ofMetaML in SML/NJ.The essential ingredients of a program that requires more than abstractionand application for staging are Brackets, dynamic (non-level 0) abstractions,and Escapes. Lambda-abstraction over unit can be used to encode Bracket, andapplication to unit to encode Run. However, Escape is considerably more dif-�cult. In particular, the expression inside an Escape has to be executed beforethe surrounding delayed computation (closure) is constructed. This becomes aproblem when variables introduced inside the delayed expression occur in theEscaped expression. For example: hfn x ) ~(f hxi)i.One way to imitate this behavior uses two non-pure SML features. Referencescan be used to simulate evaluation under lambda, and exceptions to simulatethe creation of uninitialized reference cells. Consider the following sequence ofMetaML declarations:fun G f = hfn x ) ~(f hxi)ival pc = G (fn xc ) h(~xc,~xc)i)val p5 = (run pc) 5The corresponding imitation in SML would be:exception not yet de�nedval unde�ned = (fn () ) (raise not yet de�ned))fun G f =let val xh = ref unde�nedval xc = fn () ) !xh ()
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val nc = f xcin fn () ) fn x ) (xh:=(fn () ) x);nc ())end;val pc = G (fn xc ) fn () ) (xc(),xc()))val p5 = (pc ()) 5In this translation, values of type h�i are encoded by delayed computationsof type unit ! �. We begin by assigning a lifted unde�ned value to unde�ned.Now we are ready to write the analog of the function G. Given a function f,the function G �rst creates an uninitialized reference cell xh. This reference cellcorresponds to the occurrences of x in the application f hxi in the MetaMLde�nition of G. Intuitively, the fact that xh is uninitialized corresponds to thefact that x will not yet be bound to a �xed value when the application f hxi isto be performed. This facility is very important in MetaML, as it allows us tounfold functions like f on \dummy" variables like x. The expression fn () ) !xh() is a delayed lookup of xh. This corresponds to the Brackets surrounding x inthe expression f hxi. Now, we simply perform the application of the function fto this delayed construction. It is important to note here that we are applyingf as it is passed to the function G, before we know what value x is bound to.Finally, the body of the function G returns a delayed lambda-abstraction, which�rst assigns a delayed version of x to xh, and then simply includes an applied(\Escaped") version of nc in the body of this abstraction.The transliteration illustrates the advantage of using MetaML rather thantrying to encode multi-stage programs using lambda-abstractions, references,and exceptions. The MetaML version is shorter, more concise, looks like theunstaged version, and is easier to understand.One might consider an implementation of MetaML based on this approach,hidden under some syntactic sugar to alleviate the disadvantages listed above.The lambda-delay method has the advantage of being simply a machine-independentmanipulation of lambda-terms. Unfortunately it fails to meet the intensional rep-resentation criterion, and also incurs some overhead not (necessarily) incurred inthe MetaML version. In particular, the last assignment to the reference xh is de-layed, and must be repeated every time the function returned by G is used. Thesame happens with the application (\Escaping") of nc. Neither of these expenseswould be incurred by the MetaML version of G. Intuitively, these operations arebeing used to connect the meta-level variable x to its corresponding object-levelxh. In MetaML, these overheads would be incurred exactly once during the eval-uation of run pc as opposed to every time the function resulting from pc () isapplied.14 Optimization of Generated CodeWhile the semantics presented above is su�cient for executing MetaML pro-grams, code generated by such programs would contain some superuous com-putations. Not only can these superuous computations make it more costly to
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execute the generated programs, but it can also make the code larger, and henceharder for humans to understand. In what follows, we discuss two such kinds ofcomputations, and how we deal with these problems in the implementation ofMetaML.14.1 Safe Beta ReductionConsider the following example:val g = hfn x ) x * 5i;val h = hfn x ) (~g x) - 2i;If we use the big-step semantics presented above, the variable h evaluates tohfn d1 ) ((fn d2 ) d2 * 5) d1) - 2i. MetaML actually returns hfn d1 ) (d1 *5) - 2i because it attempts to perform a safe beta reduction whenever a pieceis code is Escaped into another one. A beta reduction is safe if it does nota�ect termination properties. There is one safe case which is particularly easy torecognize: An application of a lambda-abstraction to a constant or a variable canalways be symbolically reduced without a�ecting termination. This is justi�edbecause the � rule is expected to hold at all levels. Performing a safe beta stepdoes not change the termination or the order of evaluation of the program so itis performed once when the code is built rather than repeatedly when the codeis Run.14.2 Nested EscapesConsider the case where a deeply Bracketed term e at level n is Escaped allthe way to level 0. In order to execute this term (which Escapes to level 0) itmust be rebuilt n times. Consider the reduction sequence sketched below for theterm run (run hh ~~eii), where e is bound in � to h5i, of which we show only theinnermost Run. e ,! hh5ii~e 1,! h5i~~e 2,! ~h5ih~~ei 1,! h~h5iihh~~eii ,! hh~h5iii 5 1,! 5h5i ,! h5i~h5i 1,! 5h~h5ii ,! h5irun hh~~eii ,! h5iThe term h5i is rebuilt two times. A simple re�nement can prevent this fromhappening. We change the rebuilding of Escaped expressions at levels greaterthan 1 by adding the rule Escape Opt n+2 in addition to the rule Escape n+2.Escape Opt n+2: � ` e1 n+1,! he2i� ` ~e1 n+2,! e2
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Escape n+2: � ` e1 n+1,! e2� ` ~e1 n+2,! ~e2Thus a long sequence of Escapes surrounded by an equal number of Bracketsgets rebuilt exactly once. This optimization is justi�ed because rebuilding morethan once performs no useful work.Note that these optimization eliminate some redexes that the user might ex-pect to see in the generated code, and hence make it hard to understand why aparticular program was generated. In our experience, the resulting smaller, sim-pler programs, are easier to understand and seemed to make the optimizationsworthwhile.15 Discussion and Related WorksNielson and Nielson pioneered the investigation of multi-level languages withtheir work on two-level functional languages [30, 34, 31, 32]. They have devel-oped an extensive theory for the denotational semantics of two-level languages,including a framework for abstract interpretation [33]. The framework developedis for a general (\B-level") language, where B is an arbitrary, possibly partially-ordered set. Recently, Nielson and Nielson proposed an algebraic framework forthe speci�cation of multi-level type systems [35, 36].Gomard and Jones [11] use a statically-typed two-level language for partialevaluation of the untyped �-calculus. This language is the basis for many BTAs.The language allows the treatment of expressions containing monolithic freevariables. They use a \const" construct only for constants of ground type. Ourtreatment of variables in the implementation semantics is inspired by their work.Gl�uck and J�rgensen [9] present the novel idea of multi-level BTA (MBTA),as an e�cient and e�ective alternate to multiple self-application. An untypedmulti-level language based on Scheme is used for the presentation. MetaML hasfewer primitives than this language, and our focus is more on program generationissues rather than those of BTA. It is also worth noting that all intermediateresults in their work are printable, that is, have a high-level intensional represen-tation. In MetaML, cross-stage persistence allows us to have intermediate results(between stages) that contain constants for which no intentional representationis available. While this is very convenient for run-time code generation, it madethe proper speci�cation of MetaML more di�cult. For example, we can't usetheir \Generic Code Generation functions" to de�ne the language. A secondpaper by Gl�uck and J�rgensen [10] demonstrates the impressive e�ciency ofMBTA, and the use of constraint-solving methods to perform the analysis. TheMBTA is type-based, but underlying language is not statically typed.Thiemann [50] studies a two-level language with eval, apply, and call/cc inthe context of the partial evaluation of a larger subset of scheme than had beenpreviously studied. A BTA based on constraint-solving is presented. Although
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the problems with eval and call/cc are highlighted, a di�erent notion of types isused, and the complexity of introducing eval into a multi-stage language does notmanifest itself. Thiemann also deals with the issue of variable-arity functions, apractical problem when dealing with eval in Scheme.Hatcli� and Gl�uck studied a multi-stage ow-chart language called S-Graph-n, and thoroughly investigated the issues involved in the implementation of sucha language [13]. The syntax of S-Graph-n explicitly captures all the informationnecessary for specifying the staging of a computation: each construct is anno-tated with a number indicating the stage during which it is to be executed, andall variables are annotated with a number indicating the stage of their availabil-ity. S-Graph-n is not statically typed, and the syntax and formal semantics ofthe language are quite sizable. Programming in S-Graph-n requires the user toannotate every construct and variable with stage annotations, and ensuring theconsistency of the annotations is the user's responsibility. In their work, Hat-cli� and Gl�uck identi�ed language-independence of the internal representation of\code" as an important characteristic of any multi-stage language.Sheard and Nelson investigate a two-stage language for the purpose of pro-gram generation [43]. The base language was statically typed, and dependenttypes were used to generate a wider class of programs than is possible by MetaMLrestricted to two stages. Sheard and Shields [44] investigate a dynamic type sys-tems for multi-staged programs where some type obligations of staged compu-tations can be put o� till run-time.Davies and Pfenning present a statically-typed multi-stage languageMini-ML�,motivated by constructive modal logic [6]. A formal proof is presented for theequivalence of binding-time correctness and modal correctness. MetaML type-system was motivated primarily by operational considerations. Their languagehas two constructs, box and let-box, which correspond roughly to Brackets andRun. Mini-ML�'s � type constructor is similar to code. Mini-ML� can simulateLift, but a stage-zero function, for example, cannot be made persistent. Finally,functions like back are not expressible in Mini-ML�.The multi-stage language Mini-ML [6] is motivated by a linear-time con-structive modal logic. The language allows staged expressions to contain mono-lithic free variables. The two constructs of Mini-ML; next and prev, correspondquite closely to MetaML's Brackets and Escape. The type constructor  alsocorresponds roughly to code. Unfortunately, eval is no longer expressible in thelanguage.Moggi advocates a categoric approach to two-level languages [28]. He alsopoints out that the use of stateful functions such as gensym or newname inthe semantics makes their use for formal reasoning hard. The implementationsemantics presented in this paper uses a gensym, but the big-step semantics doesnot.Figure 3 is a summary of the distinguishing characteristics of some of thelanguages discussed here. For Levels, \2" mean it is a two-level language, and\+" means multi-level. For static typing, \1" means only �rst level is staticallychecked.
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Facility Example Nielson&Nielson[34] Gomard& Jones[11] Gl�uck &J�rgen-sen[9] Thie-mann[50] Hatcliff& Gl�uck[13] �� [7] � [6] �MLevels h�x.xi 2 2 + 2 + + + +Static Typing Y 1 N N N Y Y YMonolithic Var. h�x.~(f hxi)i Y Y Y Y Y N Y YReection Run or eval N N N Y N Y N YPersistence �f.h�x.f xi N N N N N N N YPortability Y Y Y Y Y Y Y NFig. 3. Comparative feature set16 Ongoing Work and Open QuestionsThe work reported in this paper has directed our attention to many impor-tant questions relating to multi-stage computation in general, and MetaML inparticular. We are currently investigating a number of aspects of MetaML:1. A denotational semantics assigns an abstract meaning to a language. Weexpect that the works of Nielson and Nielson, and Moggi, will serve as agood basis for assigning such a semantics to MetaML.2. Reduction semantics and equational theory, to serve as a practical basisfor formal reasoning about program optimizations and the equivalence ofprograms. A reduction semantics is investigated in [48], but is limited dueto a subtlety with the non-standard de�nition of substitution.3. MetaML admits the analog of polyvariant specialization [14] by annotatingdi�erently copies of the same program. It is not yet clear how to make thistask easier for the programmer.4. Validating the implementation with respect to more abstract formulationsof the semantics of MetaML.5. Extending to e�ects. The extension of the current type system with e�ects isnot obvious. For example, adding references and sequencing a la SML allowsthe following unsafe program:val r = ref h1i;val c = hfn x ) ~(r := hxi; 2)i;val i = run (!r);6. Providing a more general solution to the let-binding problem. While we haveproposed one solution to the let-binding problem at top-level, this solutiondoes not carry over the let-bindings at higher levels.7. Simplifying the type system. The Flex property suggests that it may besu�cient to keep track only of the di�erence between n and r in the typingenvironment. Also, our remedies for the limitation in the expressivity of Runwere ad hoc.
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17 ConclusionWe have described a multi-stage programming language which we call MetaML.MetaML was designed as a programming language. Our primary purpose was tosupport the writing of multi-stage programs. Because of this our design choiceswhere di�erent from those of other multi-stage systems. We believe that MetaMLhelps us in understanding and communicating ideas about multi-stage programs,partial evaluation, and the complex process of BTA in much the same way thatthe boxed/unboxed(#) distinction provides a language for understanding boxingoptimizations as source-to-source transformations [21].This paper identi�es a number of language features that we have found tobe essential when writing multi-stage programs:{ Cross-stage persistence.The ability to use variables from any past stage iscrucial to writing staged programs in the manner to which programmers areaccustomed. Cross-stage persistence provides a solution to hygienic macrosin a typed language, that is macros which bind identi�ers in the environmentof de�nition, which are not \captured" in the environment of use.{ Multi-stage aware type system. The type checker reports phase errorsas well as type errors. This is crucial when debugging multi-stage programs.{ Display of code. When debugging, it is important for users to observethe code produced by their programs. This requires a display mechanism(pretty-printer) for values of type code.{ Display of Constants. The origin of a cross-stage persistence constant canbe hard to identify. The named % tags provide an approximation of wherethese constants came from. While these tags can sometimes be misleading,they are often quite useful.{ The connection between hAi ! hBi and hA ! Bi. Having these me-diating functions reduces, sometimes drastically, the number of annotationsneeded to stage programs.{ Lift. The Lift annotation makes it possible to force computation in a earlystage and Lift this value into a program to be incorporated at a later stage.While it may seem that cross-stage persistence makes Lift unnecessary, Lifthelps produce code which is easier to understand, because constants becomeexplicit.{ Safe beta- and Escape-reduction. These optimizations improve the gen-erated code, and often make it more readable.We have built an implementation which was used to program the examplesin this paper and other larger examples (cf. [49]). Currently, the implementationsupports polymorphic type-inference. We are also extending this implementationto include all the features SML.Acknowledgments: The research on MetaML, and this paper, have bene�tedgreatly from our collaboration with Zino Benaissa and Eugenio Moggi. Overthe years, have have also had the good fortune of getting valuable inputs fromKoen Claessen, Olivier Danvy, Rowan Davies, Robert Gl�uck, Jim Hook, Neil
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